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Abstract

This paper explores the existing relationship
between Possibilit y Theory and Theory of
Evidence, when they are both applied to fuzzy
arithmetic. Possibilit y Theory arithmetic is based
on the extension principle (projection of the joint
possibilit y distribution), while in Theory of
Evidence, the consonant bodies of evidence
obtained from each operand are combined into a
new joint body of evidence, which can in general
be non consonant. Identical behaviour is found
when the joint possibilit y distribution is calculated
using the min operator, while Possibilit y Theory
gives more specific results when others T-norms
are used. This has been considered by some
authors as a Theory of Evidence drawback
(Dubois & Prade 1989). This paper shows that
Theory of Evidence may be a more realistic
uncertainty model when input data are obtained
from random experiments with imprecise
outcomes.

1 INTRODUCTION

There is a straight forward relationship between Possibilit y
Theory and Theory of Evidence, when consonant bodies
of evidence are involved. In this case possibilit y and
plausibilit y measures coincide. Interpreting basic
assignments as density functions, where the random
variables are the focal elements, simulations can be
performed from given possibilit y distributions.

This paper shows how the sum of two fuzzy numbers A
and B can be calculated, applying both the extension
principle and the theory of evidence, and compares the
results.

Section 2 reviews some basic definitions. Section 3 shows
how the joint possibilit y/plausibilit y distribution can be
obtained. Section 4 compares the possibilit y/plausibilit y
distribution of the union of two points. Section 5 compares
the results of summing two fuzzy numbers using both
approaches, and finally some conclusions are presented in
Section 6.

2 DEFINITIONS REVIEW

Plausibilit y and Belief measures are fuzzy measures
defined by (see (Kli r 1988) (Shafer 1987)):
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where P X( )  is the power set of crisp subsets of X.

Plausibilit y/Belief measures can also be defined, given a
body of evidence (F,m), as:

Pl B m Ai
A Bi

( ) ( )==
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Bel B m Ai
A Bi

( ) ( )=
⊆
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where Ai  are the focal elements and m is the basic

probabilit y assignment (Alvarez 1994).

When the body of evidence is consonant, that is, its focal
elements are nested, then the plausibilit y (resp belief)
measure is called possibilit y (resp necessity) measure, and
the following properties hold:

[[ ]] [[ ]]Pl A B max Pl A Pl B A B max A B( ) ( ), ( ) ( ) ( ), ( )∪∪ == →→ ∪∪ ==    π π π
[ ] [ ]Bel A B min Bel A Bel B A B min A BN N N( ) ( ), ( ) ( ) ( ), ( )∩ = → ∩ =

Taking into account the body of evidence, a fuzzy set can
be given a probabili stic interpretation. The basic
assignment is view as a probabilit y density function whose
random variable is the set of focal elements. The
possibilit y/plausibilit y distribution function is defined
from the plausibilit y measure definition by:

{ }( )
{ }

µ( ) ( ) ( )x Pl x m A m Ai i
x AA x ii

= = =
∈∩ ≠∅
∑∑

µ( )x  can then be interpreted as a probabilit y distribution

function of the focal elements, and Montercarlo method
can be used to obtain a realisation of the random variable,
that is, to obtain a set Ai .



A possibilit y distribution can be also be represented in
terms of its alpha-cuts (Dubois & Prade 1989) (Dubois &
Prade 1986 a):

( ]{ }Fα α ∈ 01,  where { }F w wFα µ α= ≥( )

          ( ]{ }µ α αF w w F( ) sup ,= ∈ ∈01

In the following, only possibilit y and plausibilit y measures
will be considered.

3 JOINT POSSIBILITY / PLAUSIBILITY
DISTRIBUTION

3.1 JOINT DISTRIBUTION IN POSSIBILITY
THEORY

Having two fuzzy numbers A and B with possibilit y
distributions π A a( )  and π B b( )  defined over UA  and

UB, the joint possibilit y distribution π AxB  can be obtained

combining them with a T-norm:

{ }π π πAxB A Ba b T a b( ( , ) ) ( ( ), ( ))1 1 1 1=

where a Ui A∈  and b Ui B∈ .

Figure 1 shows A and B possibilit y distributions and the
joint distribution π AxB  for the minimum, product or

Luckasievicz T-norms. As it can be seen, the min T-norm
gives the least specific result.

When both numerical variables a i  and bi  correspond the

same physical variable, a possibilit y distribution can be
obtained cutting the previous surfaces with a bi i== , as

shown in Figure 2 (Zadeh 1977). It is supposed that the
sources are completely reliable, as conjunctive consensus
has been used (Dubois & Prade 1988).

3.2 JOINT DISTRIBUTION IN THEORY OF
EVIDENCE

If we consider the consonant body of evidence of each
fuzzy set ( , ) ( , )F m F mA A B B

�  as the random variables

density functions, the relationship between both random
variables can be used to calculate the joint basic
assignment mAxB . The plausibilit y measure is then given

by:

{{ }}
Pl a b m CAxB i

C a bi

(( , )) ( )
( , )
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1 1
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where Ci  are the focal elements of the joint body of

evidence, defined in A Bi i× , or a subset, depending on

the relationship between the random variables.

Figure 1: Joint possibilit y distribution, with different T-norms:
a) minimum, b) product, c) Lukasiewicz

Figure 2: A and B possibilit y distribution when a bi i== , with different T-norms:

a) minimum, b) product, c) Lukasiewicz
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If the joint body of evidence is consonant, this plausibilit y
measure is also a possibilit y measure.

In the following, three kinds of relationships between the
random variables will be analysed: α αA B== ,

independence, and α αA B== −−1 . As explained in (Tan

1993), when probabilit y is concentrated and uniformly
distributed on the main diagonal of the joint domain, α A

and α B  are in perfect positive correlation. It can also be

interpreted as concordance between A and B sources of
knowledge (for example, the same instrument has been
used to measure A and B intervals).
When the whole probabilit y is concentrated and uniformly
distributed on the anti-diagonal, α A  and α B  are in

perfect negative correlation. It can be interpreted as a
discrepancy between both sources of knowledge, or
between precision in measurements. Independence
remains with its usual interpretation.

3.2.1 αα ααA B==  relationship

In this case the joint basic assignment is only defined in
the line shown in Figure 3. A and B basic assignments are
displayed in X and Y axes, and the joint basic probabilit y
assignment in the corresponding subset of Ai x Bi .

Each point of the A basic assignment represents an interval
that is a ( , )F mA A  body of evidence focal element. Every

interval is represented by its lower limit, and thus the
domain of the basic assignment is the domain of the
intervals lower limits. This graphical representation is
similar to (Tan 1993), where focal elements are
represented by their corresponding alpha value. But lower
limit representation allows to show plausibilit y measures
in the basic assignment graph.
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Figure 3: Joint basic assignment when α αA B==

Every pair ( , )a bi j
 located in the domain of the joint basic

assignment mAxB  represents a focal element of the joint

body of evidence ( , )F mAxB AxB . Figure 4 shows that in

this case the joint focal elements are nested, and thus
plausibilit y measures will be possibilit y measures.

To calculate the possibilit y of a1
 and b1

 (see Figure 4),

every joint focal element containing the pair ( , )a b1 1
 has to

be considered. That is,

π (( , )) ( )a b m CAxB k
k i

n

1 1 =
=

∑
or, expressed for continuous variables:

π (( , )) ( )a b m C dCAxB k k

C C

C

k i

n

1 1 = ⋅
=
∫

which is equal to the area indicated in Figure 5.
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Figure 4: Joint body of evidence focal elements when
α αA B==

Since this point belongs to the line corresponding to
α αA B== , it is π π π(( , )) ( ) ( )a b a b

A B1 1 1 1= = .

To calculate the possibilit y of the pair ( , )a b2 2
 shown in

Figure 4, it should be noted that the joint focal elements
containing this point are the same joint focal elements that
contain the previous one ( , )a b1 1

. That is,

π π π π π(( , )) (( , )) ( ) ( ( ), ( ))a b a b b min a b
B A B2 2 1 1 2 2 2= = =
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Figure 5: Possibilit y of ( a1 ,b1) when α αA B==



Calculating the possibilit y of every pair ( , )a bi j
, the joint

possibilit y distribution is the one obtained in possibilit y
theory when the min T-norm is used.

Numerical simulation can be applied to obtain the same
result R using both approaches, when A and B refer to the
same physical variable. (Figure 2.a). To perform the
simulation, random variables are obtained by Montecarlo
method: a value of alpha is generated as a uniform
distribution between 0 and 1. With this value, alpha-cuts
of A and B are obtained, which are realisations of the
random variables. The intersection of both intervals is
calculated, and the result is a focal element of ( , )F mR R .

These focal elements are nested and the possibilit y
measure associated to the resulting body of evidence can
be obtained by the formula

π ( ) ( )r m RR k
k i

n

1 =
=

∑

3.2.2 Independence relationship

If Ai  and Bi  random variables are independent, the joint

basic assignment domain is the whole cartesian product
Ai x Bi , where the basic assignment is uniformly

distributed (see Figure 6).
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Figure 6: Joint basic assignment when Ai  and Bi  are

independent

Again, every point in the domain represents a joint focal
element, build from a focal element of ( , )F mA A  and a

focal element of ( , )F mB B  (represented both by their

lower limits). Two of these joint focal elements are shown
in Figure 7. As the domain is the whole cartesian product,
the focal elements are not nested, and the plausibilit y
measures associated to the joint body of evidence are not
possibilit y measures.
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Figure 7: Joint body of evidence focal elements when Ai

and Bi  are independent

Plausibilit y of ( a1  and b1) is calculated considering every

joint focal element that contains the point ( , )a b1 1
. Every

focal element, represented by a point located in the
volume base in Figure 8, contains ( , )a b1 1

. Applying the

plausibilit y formula for continuous variable, the
plausibilit y is the volume shown in Figure 8.
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Furthermore, ( , )a b1 1
 plausibilit y is equal to the product of

possibiliti es π A a( )1
, π B b( )1

, and thus the plausibilit y

distribution obtained from the theory of evidence is the
same as the possibilit y distribution obtained from the
possibilit y theory.

As it will be explained later, the difference is that the
underlying body of evidence in possibilit y theory is
consonant, while in the theory of evidence it is not.
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Figure 8: Plausibilit y of ( a1 ,b1) when Ai  and Bi  are

independent



The same conclusion was reached using numerical
simulation, when A and B refer to the same variable.
Numerical simulation with independent random variables
gives the same result as the possibilit y theory approach,
when the product t-norm is used.

Numerical simulation has been performed as before, but
two different values of alpha are obtained independently,
one for A an the other one for B.

3.2.3 αα ααA B== −−1  relationship

When the relationship between Ai  and Bi  is somehow

contradictory, α αA B= −1 , the joint focal elements are

only defined in the line shown in figure 9, where the joint
basic assignment is uniformly distributed (Tan 1993).
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Figure 9: Joint basic assignment when α αA B= −1

In this case, as shown in Figure 10, focal elements are
again not nested, giving a non consonant body of
evidence, and thus, plausibilit y measures are not
possibilit y measures.
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Figure 10: Joint body of evidence focal elements when
α αA B= −1

Let us consider the point ( , )a b1 1
 in Figure 10. Since no

joint focal element contains that point, its plausibilit y is
null . On the other hand, ( , )a b2 2

 plausibilit y is not null .

Every joint focal element from Ck
 to Cj

 has to be

considered, because it contains the point ( , )a b2 2
 giving:

Pl a b m C dCAxB i i

C C

C

i k

j

(( , )) ( )2 2 = ⋅
=
∫

which can be interpreted as the area shown in Figure 11.
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Figure 11: Plausibilit y of ( a2 ,b2 ) when α αA B= −1

Plausibilit y measure can be expressed in terms of the
initial bodies of evidence:
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And in general, for any pair ( , )a bi j
, it is:

( )Pl a b max a bi j A i B j(( , )) , ( ) ( )= + −0 1π π
that is, Lukasiewicz T-norm. The joint plausibilit y
distribution in this case is the same as the possibilit y
distribution obtained by possibilit y theory, the difference
being again the underlying body of evidence.

Numerical simulation gives the same result. A value of
alpha is obtained (uniformly distributed between 0 and 1)
and the other one is calculated according to α αA B= −1 .



4 PLAUSIBILITY OF ( , ) ( , )a b a b1 1 2 2∪∪

4.1 POSSIBILITY THEORY

The possibilit y of a set is the maximum possibilit y of
every point belonging to it, that is:

( ) ( )π π π( , ) ( , ) ( , ), ( , )a b a b max a b a b1 1 2 2 1 1 2 2∪ =

where the joint possibilit y is obtained with a T-norm.

4.2 THEORY OF EVIDENCE

Given a body of evidence ( , )F mAxB AxB , the plausibilit y

measure of a two points set is given by:

( )Pl a b a b m CAxB i
C a b
or
C a b

i

i

( , ) ( , ) ( )
( , )

( , )

1 1 2 2

1 1

2 2

∪ =
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∩ ≠∅

∑

that is, every joint focal element containing at least one of
the two points must be considered.

Figure 12.a shows the joint focal elements that contain
(a1,b1) or (a2,b2), when the relationship between the
random variables is α αA B== . In this case, the plausibilit y

of the union is equal to the plausibilit y of ( , )a b2 2
, which is

the maximum plausibilit y of both points (max operator is
obtained when focal elements are nested, (Kli r 1988)).
The result is the same as in possibilit y theory because the
underlying body of evidence is also the same.

Figure 12.b shows the joint focal elements when the
random variables are independent. All the joint focal
elements located in the marked area contain at least one of
the two points. Expressing the formula for continuous
variables, the plausibilit y is the integral of the uniform
distribution m AxB  over the indicated area (that is, the

volume whose base is the indicated area). This volume is
in general greater or equal than the volumes obtained for

( )Pl a b( , )1 1 , or ( )Pl a b( , )2 2 . Then it is:

( ) ( )Pl a b a b max Pl a b Pl a b( , ) ( , ) ( , ), ( , )1 1 2 2 1 1 2 2∪ ≥

This discrepancy between both approaches is due to the
fact that the body of evidence obtained from the theory of
evidence is not consonant, while possibilit y theory always
considers, among all the different bodies of evidence with
the same possibilit y/plausibilit y distribution, the
underlying consonant body of evidence. The use of max
operator in the extension principle means that the
considered body of evidence is the consonant one.

Figure 12.c shows the joint focal elements that contain at
least one of the points, when the relationship between the
random variables is α αA B= −1 . Again, expressing the

plausibilit y for continuous variables, its value is given by
the area whose base is marked, and in general it is greater
or equal than the individual plausibilit y measures. As in
the previous case, the body of evidence considered by the
theory of evidence is not consonant, while the body of
evidence underlying in possibilit y theory calculus is the
consonant one.

5 SUM OF A AND B

In this section the sum of two fuzzy numbers A and B will
be discussed using the previous results. Given A and B
their sum R=A+B will be obtained computing the
possibilit y/plausibilit y of the union of points located in the
line defined by a b rj k i+ = , where ri ∈ UR.

5.1 POSSIBILITY THEORY

Applying the extension principle, the possibilit y of each ri

is obtained as the maximum of the possibiliti es of the pairs
(aj,bk) verifying a b rj k i+ = , which defines a section in

the joint possibilit y distribution. Figure 13 shows the
section obtained for a particular ri.

Figure 12: Joint focal elements containing ( a1 ,b1) or ( a2 ,b2 ).

a) α αA B== , b) independence, c) α αA B= −1
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Figure 13: a b constantj k+ =  cut with different T-norms:

a) minimum, b) product, c) Lukasiewicz

5.2 THEORY OF EVIDENCE

Given a line defined by a b constant rj k i+ = = , the

plausibilit y of ri  is calculated summing the basic

probabilit y assignment of every joint focal element
containing any of the points of the line.

Figure 14.a shows these focal elements when the random
variables are related by α αA B== . For example the

possibilit y of ri = 3  is given by the possibilit y of the point

where the diagonal and the line a bj k+ = 3  intersect.

Figure 14.b shows the joint focal elements where the
random variables are independent. The plausibilit y
measure is the volume whose base is the marked area.

When the random variables are related by α αA B= −1 ,

see figure 14.c, there are no joint focal elements located in
α αA B= −1  line containing any point defined by

a bj k+ = 3 . This means that the plausibilit y of 3, in this

case, is zero. The figure also shows the joint focal
elements that must be taken into account to calculate the
plausibilit y of 3.5.

Again it can be checked that the plausibilit y of the union is
greater or equal to the maximum of all of them:

( )Pl r max Pl a bi
a b r

j k
j k i

( ) ( , )≥
+ =

The values of R under these three assumptions were also
computed using numerical simulations. Again Montecarlo
method was used to obtain the focal elements of A and B
that had to be added. Apart from the case where α αA B==
that gives the same result using both approaches, in
general theory of evidence leads to less specific
distributions than possibilit y theory.

Figure 14: Joint focal elements containing any point of a b constantj k+ = :

a) α αA B== , b) independence, c) α αA B= −1
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Figure 15: Joint focal elements with different T-norms:
a) minimum, b) product, c) Lukasiewicz

6 CONCLUSIONS

This paper analyses two different approaches to aggregate
possibilit y distributions and to operate fuzzy numbers,
using possibilit y theory and fuzzy arithmetic in one hand,
and theory of evidence on the other hand.

Given the focal elements of each of the operands
(interpreted as random variables), the conjunctive joint
possibilit y/plausibilit y distributions obtained from both
methods are identical when:

• the random variables are related by α αA B==  and

the and operator used in possibilit y theory is the
min t-norm.

• the random variables are independent and the and
operator used in possibilit y theory is the product
T-norm.

• the random variables are related by α αA B== −−1

and the and operator used in possibilit y theory is
the Lukasiewicz t-norm.

Given a subset of the conjunctive joint possibilit y
distribution, its possibilit y is calculated using the max
operator, and thus implicitly assuming a consonant
underlying body of evidence. However in theory of
evidence, the plausibilit y distribution must be obtained
from an explicitly calculated body of evidence, which is in
general not consonant, leading to different and less
specific results.

If we suppose (see (Dubois & Prade 1986 b)) that fuzzy
numbers A and B are obtained from random experiments
with imprecise outcomes, that is, each measure is an
interval where no distinctions can be made, the theory of
evidence seems a more realistic model. Additionally this
means that Montecarlo simulation can be used to perform
the computations.

On the contrary the nested underlying focal elements
obtained from the joint possibilit y distributions (using
product and Lukasiewicz t-norms) can not be interpreted
the same way (see figure 15), since they can not be
obtained combining A and B focal elements. As seen

previously, the combination of A and B focal elements
only produce rectangles parallel to the axes.

Theory of evidence approach leads to less specific results
than possibilit y theory, although it could be considered a
more realistic uncertainty model under the above
assumptions, not just a possibilit y theory approximation
(see (Dubois & Prade 1989)).
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